martes, 29 de septiembre de 2015

MAS

Movimiento armónico simple
 Sistema masa-resorte

Ver detalles en:
http://ondasquenosrodean.blogspot.com/p/los-sistemas-fisicos-manifiestan_28.html

Este sencillo applet ilustra el comportamiento de sistemas oscilantes más complicados. Entre sus innumerables aplicaciones, mencionamos el mecanismo de amortiguamiento de los automóviles mediante resortes espirales. 
      Se caracteriza por poseer dos propiedades fundamentales: 
a) La elasticidad, la cual reside en el resorte; se mide mediante su constante elástica k, en N/m.
b) La inercia, la cual reside en la pesa que cuelga; se mide mediante su masa m, en Kg. En este modelo particular consideramos que la masa del resorte es muy pequeña comparada con la masa de la esfera. 
    Estas propiedades (elasticidad e inercia) compiten para mantener el sistema oscilando. Por efecto de la elasticidad se genera la fuerza elástica restauradora que actúan sobre la esfera colgante cuando ha sido desplazada de su posición de equilibrio estable; por su parte, la inercia da información acerca de cómo responde la masa a la acción de la fuerza restauradora. Cuando la esfera se encuentra por arriba (o debajo) de la posición de equilibrio, se genera una fuerza restauradora que lo obliga a retornar a dicha posición; en esta posición de equilibrio, la fuerza elástica deja de actuar y la inercia  “toma el control” para enviar la esfera más allá de la posición de equilibrio, hacia los puntos de retorno donde se devuelve. Este proceso se repite y mantiene mientras el sistema oscile. Por simplicidad, no hemos considerado tampoco en este análisis el efecto de la fricción.
   A continuación se describe este sistema oscilante de constante elástica k y masa m, mediante una adaptación realizada por los autores del presente blog al excelente applet de Luciano Troilo (http://geogebratube.org/material/show/id/2338). Con los botones de  INICIOPAUSA y REINICIO  es posible controlar el funcionamiento del sistema. También se dispone de un cronómetro para la medida del tiempo en segundos.


Inicialmente, la esfera se encuentra en posición de equilibrio (flecha horizontal a trazos) estable porque, al no estar estirado o comprimido el resorte, la fuerza restauradora (vector verde) es cero. Al pulsar la tecla de Arranque, comienza a oscilar hacia arriba, llega a la posición de máximo desplazamiento vertical (vector morado) y retorna a la posición de equilibrio de nuevo; luego, la inercia lo hace bajar hasta el punto de máximo desplazamiento y sube otra vez hasta la posición de equilibrio, la cual traspasa por la acción de la inercia. El ciclo se repite indefinidamente en este modelo sin roce.